Myotonic dystrophy: emerging mechanisms for DM1 and DM2.
نویسندگان
چکیده
Myotonic dystrophy (DM) is a complex multisystemic disorder linked to two different genetic loci. Myotonic dystrophy type 1 (DM1) is caused by an expansion of a CTG repeat located in the 3' untranslated region (UTR) of DMPK (myotonic dystrophy protein kinase) on chromosome 19q13.3. Myotonic dystrophy type 2 (DM2) is caused by an unstable CCTG repeat in intron 1 of ZNF9 (zinc finger protein 9) on chromosome 3q21. Therefore, both DM1 and DM2 are caused by a repeat expansion in a region transcribed into RNA but not translated into protein. The discovery that these two distinct mutations cause largely similar clinical syndromes put emphasis on the molecular properties they have in common, namely, RNA transcripts containing expanded, non-translated repeats. The mutant RNA transcripts of DM1 and DM2 aberrantly affect the splicing of the same target RNAs, such as chloride channel 1 (ClC-1) and insulin receptor (INSR), resulting in their shared myotonia and insulin resistance. Whether the entire disease pathology of DM1 and DM2 is caused by interference in RNA processing remains to be seen. This review focuses on the molecular significance of the similarities and differences between DM1 and DM2 in understanding the disease pathology of myotonic dystrophy.
منابع مشابه
Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2...
متن کاملInvestigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA-target gene networks
The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DE...
متن کاملThe myotonic dystrophies: diagnosis and management.
There are currently two clinically and molecularly defined forms of myotonic dystrophy: (1) myotonic dystrophy type 1 (DM1), also known as 'Steinert's disease'; and (2) myotonic dystrophy type 2 (DM2), also known as proximal myotonic myopathy. DM1 and DM2 are progressive multisystem genetic disorders with several clinical and genetic features in common. DM1 is the most common form of adult onse...
متن کاملClinical aspects, molecular pathomechanisms and management of myotonic dystrophies
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) was described more than 100 years ago and is caused by a (CTG)n expansion in DMPK, while myotonic dystro...
متن کاملClinical Aspects and Management of Myotonic Dystrophies
– Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert’s disease) was described more than 100 years ago and is caused by a (CTG)n expansion in DMPK, while myotonic dyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1772 2 شماره
صفحات -
تاریخ انتشار 2007